--- jupytext: text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.10.2 kernelspec: display_name: gsfenv language: python name: gsfenv --- # Grouped Gene Covariance Here we group samples by an annotation category, then plot the gene means against one another. ***Plotting Guide Setup*** A shared setup for all plotting guides. ```{code-cell} # OS-independent path management. from os import environ from pathlib import Path import numpy as np import GSForge as gsf import holoviews as hv hv.extension('bokeh') OSF_PATH = Path(environ.get("GSFORGE_DEMO_DATA", default="~/GSForge_demo_data/")).expanduser().joinpath("osfstorage", "oryza_sativa") NORMED_GEM_PATH = OSF_PATH.joinpath("AnnotatedGEMs", "oryza_sativa_hisat2_normed.nc") TOUR_BORUTA = OSF_PATH.joinpath("GeneSetCollections", "tour_boruta") ``` ```{code-cell} agem = gsf.AnnotatedGEM(NORMED_GEM_PATH) agem ``` ```{code-cell} gsc = gsf.GeneSetCollection.from_folder( gem=agem, target_dir=TOUR_BORUTA, name="Boruta Results") gsc ``` ## View Annotation Group Covariance ```{code-cell} gsf.plots.gem.GroupedGeneCovariance( agem, group_variable="treatment", x_group_label="CONTROL", y_group_label="HEAT", count_transform=lambda counts: np.log10(counts + 0.25)) ```