GSForge.operations.analytics module¶
Analytics are intended to more closely rank or compare a GEM subset, rather than the entire GEM.
These functions are intended for analyzing and comparing subsets generated by the functions found in prospectors.
- class GSForge.operations.analytics.RankGenesByModel(**kwargs)¶
Bases:
GSForge.models._Interface.CallableInterfaceGiven some machine learning model, runs n_iterations and returns a summary of the ranking results.
This operation uses the
Interfacebase class.- Parameters
model – A model that can be trained via
.fit(x, y).n_iterations (int) – Number of gene ranking iterations to use an instance of model.
Parameters inherited from:
GSForge.models._Interface.Interface: gem, gene_set_collection, selected_gene_sets, selected_genes, gene_set_mode, sample_subset, count_variable, annotation_variables, count_mask, annotation_mask, count_transformmodel= param.Parameter(readonly=False)n_iterations= param.Integer(readonly=False)- model = None¶
- n_iterations = 1¶
- static rank_genes_by_model(counts: xarray.core.dataarray.DataArray, labels: xarray.core.dataarray.DataArray, model) xarray.core.dataarray.DataArray¶
- name = 'RankGenesByModel'¶
- class GSForge.operations.analytics.nFDR(**kwargs)¶
Bases:
GSForge.models._Interface.CallableInterfacenFDR (False Discovery Rate) [method_compare].
nFDR trains two models and compares their
feature_importances_attributes to estimate the false discovery rate.The FDR estimated is the percent of instances a shuffled output feature has a higher feature importance score than the same non-shuffled feature score.
This is repeated up to
n_iterations.Parameters inherited from:
GSForge.models._Interface.Interface: gem, gene_set_collection, selected_gene_sets, selected_genes, gene_set_mode, sample_subset, count_variable, annotation_variables, count_mask, annotation_mask, count_transformmodel= param.Parameter(readonly=False)n_iterations= param.Integer(readonly=False)- model = None¶
- n_iterations = 1¶
- static nFDR(counts: xarray.core.dataarray.DataArray, labels: xarray.core.dataarray.DataArray, model) xarray.core.dataarray.DataArray¶
- name = 'nFDR'¶
- class GSForge.operations.analytics.mProbes(**kwargs)¶
Bases:
GSForge.models._Interface.CallableInterfacemProbes [method_compare] works by randomly permuting the feature values in the supplied data. e.g. count values are shuffled within each samples feature (gene) array.
It then ranks the real and shadowed features (for
n_iterations) with the suppliedmodelvia a call tomodel.fit(). It then examinesmodel.feature_importances_for the feature importance values, and then calculates the null rank distribution.This is repeated upto
n_iterations.Parameters inherited from:
GSForge.models._Interface.Interface: gem, gene_set_collection, selected_gene_sets, selected_genes, gene_set_mode, sample_subset, count_variable, annotation_variables, count_mask, annotation_mask, count_transformmodel= param.Parameter(readonly=False)n_iterations= param.Integer(readonly=False)- model = None¶
- n_iterations = 1¶
- static mProbes(counts: xarray.core.dataarray.DataArray, labels: xarray.core.dataarray.DataArray, model) xarray.core.dataarray.DataArray¶
- name = 'mProbes'¶