GSForge.plots.gem package¶
Module contents¶
- class GSForge.plots.gem.SamplewiseDistributions(**kwargs)¶
Bases:
GSForge.plots.abstract_plot_models.InterfacePlottingBase
Provides a base that iterates through the selected samples.
Parameters inherited from:
GSForge.plots.abstract_plot_models.AbstractPlottingOperation
: apply_default_opts, plot_optionsGSForge.models._Interface.Interface
: gem, gene_set_collection, selected_gene_sets, selected_genes, gene_set_mode, sample_subset, count_variable, annotation_variables, count_mask, annotation_mask, count_transformhue_key
= param.Parameter(readonly=False)hue_colors
= param.Parameter(readonly=False)cmap
= param.Parameter(readonly=False)sample_colormap
= param.Parameter(readonly=False)datashade
= param.Boolean(readonly=False)dynspread
= param.Boolean(readonly=False)kde_kwargs
= param.Dict(readonly=False)kde_sample_size
= param.Integer(readonly=False)- hue_key = None¶
- hue_colors = None¶
- cmap = 'glasbey'¶
- sample_colormap = None¶
- datashade = False¶
- dynspread = False¶
- kde_kwargs = {'filled': False}¶
- kde_sample_size = 200¶
- static bokeh_opts()¶
- static matplotlib_opts()¶
- static kde_linespace(count_array, bin_range, sample_size, cut=3)¶
Apply the math behind the univariate_kde as implemented by Holoviews so that it can be applied with numpy.apply_along_axis.
- static evaluate_kde(values, x_space)¶
- classmethod plot_sample_wise_kde(count_array, sample_dim='Sample', color_key=None, x_axis_name='counts', sample_size=100)¶
- name = 'SamplewiseDistributions'¶
- class GSForge.plots.gem.GeneVsCountsScatter(**kwargs)¶
Bases:
GSForge.plots.abstract_plot_models.InterfacePlottingBase
Display the counts of a small selection of genes on a scatter plot (genes vs counts).
This function is a GSForge.OperationInterface method, and shares those common parameters.
A selection of genes must be supplied to this function, either specifically via the selected_genes parameter, or implicitly by the selection or combination of some GeneSet support arrays via a GeneSetCollection.
A warning is generated if the number of genes surpasses a ‘soft_max’ parameter. This is only there to prevent useless, accidental plots of many thousands of genes. You would need to override it to show more than 50 genes by default.
Parameters specific to this function:
- Parameters
hue – Color by which to shade the observations.
soft_max – The number of genes above which this function will return a ValueError rather than attempt to plot an unreasonable number of genes.
backend – The selected plotting backend to use for display. Options are [“bokeh”, “matplotlib”].
apply_default_opts – Whether to apply the default styling.
- Returns
A holoviews.Layout object. The display of this object depends on the currently selected backend.
Parameters inherited from:
GSForge.plots.abstract_plot_models.AbstractPlottingOperation
: apply_default_opts, plot_optionsGSForge.models._Interface.Interface
: gem, gene_set_collection, selected_gene_sets, selected_genes, gene_set_mode, sample_subset, count_variable, annotation_variables, count_mask, annotation_mask, count_transformhue
= param.String(readonly=False)Color by which to shade the observations.
soft_max
= param.Integer(readonly=False)The number of genes above which this function will return a ValueError rather than attempt to plot an unreasonable number of genes.
- hue = None¶
- soft_max = 250¶
- static genewise_scatter(data: pandas.core.frame.DataFrame, hue: Optional[str] = None, gene_dim: str = 'Gene', sample_dim: str = 'Sample', count_dim: str = 'counts')¶
- static bokeh_opts()¶
- static matplotlib_opts()¶
- name = 'GeneVsCountsScatter'¶
- class GSForge.plots.gem.GenewiseAggregateScatter(**kwargs)¶
Bases:
GSForge.plots.abstract_plot_models.InterfacePlottingBase
Displays the output of selected aggregations upon the count array on a scatter plot with optional adjoined kernel density estimates. e.g. mean counts vs mean variance etc. By default such outputs are log2 transformed as well.
This function is a GSForge.OperationInterface method, and shares those common parameters.
- Axis aggregation functions:
frequency
mean
variance
standard_dev
fano
mean_rank
cv_squared
Parameters specific to this function:
- Parameters
x_axis_selector – Select from the available axis aggregation functions.
y_axis_selector – Select from the available axis aggregation functions.
datashade – Whether to apply the datashader.datashade operation.
dynspread – Whether to apply the datashader.dynspread operation.
backend – The selected plotting backend to use for display. Options are [“bokeh”, “matplotlib”].
apply_default_opts – Whether to apply the default styling.
- Returns
A holoviews.Layout object. The display of this object depends on the currently selected backend.
Parameters inherited from:
GSForge.plots.abstract_plot_models.AbstractPlottingOperation
: apply_default_opts, plot_optionsGSForge.models._Interface.Interface
: gem, gene_set_collection, selected_gene_sets, selected_genes, gene_set_mode, sample_subset, count_variable, annotation_variables, count_mask, annotation_mask, count_transformdatashade
= param.Boolean(readonly=False)dynspread
= param.Boolean(readonly=False)adjoint_distributions
= param.Boolean(readonly=False)x_axis_selector
= param.ObjectSelector(readonly=False)Select from the available axis aggregation functions.
y_axis_selector
= param.ObjectSelector(readonly=False)Select from the available axis aggregation functions.
- axis_functions = {'cv_squared': <function GenewiseAggregateScatter.<lambda>>, 'fano': <function GenewiseAggregateScatter.<lambda>>, 'frequency': <function GenewiseAggregateScatter.<lambda>>, 'mean': <function GenewiseAggregateScatter.<lambda>>, 'mean_rank': <function GenewiseAggregateScatter.<lambda>>, 'standard_dev': <function GenewiseAggregateScatter.<lambda>>, 'variance': <function GenewiseAggregateScatter.<lambda>>}¶
- datashade = False¶
- dynspread = False¶
- adjoint_distributions = True¶
- x_axis_selector = 'mean'¶
- y_axis_selector = 'variance'¶
- static bokeh_opts()¶
- static matplotlib_opts()¶
- static scatter_dist(dataset, x_kdims, y_kdims, datashade=False, dynspread=False, adjoint_distributions=True, options=None)¶
- static scatter_dist_by_mappings(dataset, x_kdims, y_kdims, mappings, selection_dim='Gene', datashade=False, dynspread=False, adjoint_distributions=True, options=None)¶
- name = 'GenewiseAggregateScatter'¶
- class GSForge.plots.gem.RasterGEM(**kwargs)¶
Bases:
GSForge.plots.abstract_plot_models.InterfacePlottingBase
Parameters inherited from:
GSForge.plots.abstract_plot_models.AbstractPlottingOperation
: apply_default_optsGSForge.models._Interface.Interface
: gem, gene_set_collection, selected_gene_sets, selected_genes, gene_set_mode, sample_subset, count_variable, annotation_variables, count_mask, annotation_mask, count_transformplot_options
= param.Parameter(readonly=False)User supplied options to the plotting functions. If provided (and is not None), these will take precedence over a functions built-in defaults.
hue
= param.String(readonly=False)Color by which to shade the observations.
cmap
= param.Parameter(readonly=False)canvas_opts
= param.Dict(readonly=False)- hue = None¶
- cmap = None¶
- plot_options = {'plot_height': 400, 'plot_width': 800}¶
- canvas_opts = None¶
- static gem_raster(counts, canvas_opts=None)¶
- static colorized_gem_raster(counts, labels, cmap=None, canvas_opts=None)¶
- name = 'RasterGEM'¶
- class GSForge.plots.gem.GroupedGeneCovariance(**kwargs)¶
Bases:
GSForge.plots.abstract_plot_models.InterfacePlottingBase
Parameters inherited from:
GSForge.plots.abstract_plot_models.AbstractPlottingOperation
: apply_default_opts, plot_optionsGSForge.models._Interface.Interface
: gem, gene_set_collection, selected_gene_sets, selected_genes, gene_set_mode, sample_subset, count_variable, annotation_variables, count_mask, annotation_mask, count_transformgroup_variable
= param.String(readonly=False)x_group_label
= param.String(readonly=False)y_group_label
= param.String(readonly=False)grouped_data
= param.Parameter(readonly=False)datashade
= param.Boolean(readonly=False)dynspread
= param.Boolean(readonly=False)- group_variable = ''¶
- x_group_label = ''¶
- y_group_label = ''¶
- grouped_data = None¶
- datashade = False¶
- dynspread = False¶
- static grouped_mean_scatter(count_xarray, labels, group_variable, x_group_label, y_group_label, datashade=False, dynspread=False)¶
- static bokeh_opts()¶
- static matplotlib_opts()¶
- name = 'GroupedGeneCovariance'¶
- class GSForge.plots.gem.EmpiricalCumulativeDistribution(**kwargs)¶
Bases:
GSForge.plots.abstract_plot_models.InterfacePlottingBase
Parameters inherited from:
GSForge.plots.abstract_plot_models.AbstractPlottingOperation
: apply_default_opts, plot_optionsGSForge.models._Interface.Interface
: gem, gene_set_collection, selected_gene_sets, selected_genes, gene_set_mode, sample_subset, count_variable, annotation_variables, count_mask, annotation_mask, count_transformhue_key
= param.Parameter(readonly=False)hue_colors
= param.Parameter(readonly=False)cmap
= param.Parameter(readonly=False)sample_colormap
= param.Parameter(readonly=False)x_axis_transform
= param.Parameter(readonly=False)A transform (usually log2) for getting a viewable spread of the results.
datashade
= param.Boolean(readonly=False)dynspread
= param.Boolean(readonly=False)- hue_key = None¶
- hue_colors = None¶
- cmap = 'glasbey'¶
- sample_colormap = None¶
- x_axis_transform = ('log 2', <function EmpiricalCumulativeDistribution.<lambda>>)¶
- datashade = False¶
- dynspread = False¶
- static plot_sample_wise_ecdf(counts: xarray.core.dataarray.DataArray, sample_dim: str = 'Sample', color_key: Optional[numpy.ndarray] = None, x_axis_name='counts')¶
Draw sample-wise empirical cumulative distribution functions.
- static bokeh_opts()¶
- static matplotlib_opts()¶
- name = 'EmpiricalCumulativeDistribution'¶
- class GSForge.plots.gem.GeneCountOverTime(**kwargs)¶
Bases:
GSForge.plots.abstract_plot_models.InterfacePlottingBase
- For each treatment group:
Curve: mean / median / trend
Points: given by count_variable.
Area: log fold change
Area: variance, error.
Parameters inherited from:
GSForge.plots.abstract_plot_models.AbstractPlottingOperation
: apply_default_opts, plot_optionsGSForge.models._Interface.Interface
: gem, gene_set_collection, selected_gene_sets, selected_genes, gene_set_mode, sample_subset, count_variable, annotation_variables, count_mask, annotation_mask, count_transformselected_gene
= param.Parameter(readonly=False)time_variable
= param.Parameter(readonly=False)treatment_variable
= param.Parameter(readonly=False)dispersion_variable
= param.Parameter(readonly=False)log_fold_change
= param.Parameter(readonly=False)treatment_colormap
= param.Parameter(readonly=False)log2_output
= param.Boolean(readonly=False)- selected_gene = None¶
- time_variable = None¶
- treatment_variable = None¶
- dispersion_variable = None¶
- log_fold_change = 1.0¶
- treatment_colormap = None¶
- log2_output = True¶
- static create_plot_dataframe(dataset, selected_gene, time_var, treatment_var, dispersion_var, count_var, gene_var, count_transform=None)¶
- get_plot_dataframe()¶
- static create_spread_dataframe(points_dataframe, time_var, log_fold_spread=1.0, count_var='counts', treatment_var=None, dispersion_var=None)¶
- get_spread_dataframe()¶
- plot_as_scatter()¶
- plot_mean_curve()¶
- plot_dispersion_spread()¶
- property bokeh_opts¶
- name = 'GeneCountOverTime'¶