GSForge.plots.results package¶
Module contents¶
- class GSForge.plots.results.MeanVsLFC(*args, **params)¶
Bases:
GSForge.plots.abstract_plot_models.ResultPlottingOperation
Mean vs log-fold-change scatter plot used for visualizing differential gene expression results.
- Parameters
source (Union[GSForge.GeneSet, xarray.Dataset, pandas.DataFrame]) – Data source containing the log-fold change, and p-value variables.
log_fold_change_var (str) – The name of the log-fold change column. Must be a variable within source.
p_value_var (str) – The name of the p-value column. Must be a variable within source.
mean_value_var (str) – The name of the base mean column. Must be a variable within source.
log_fold_change_cutoff (float) – Cutoff to use in grouping and coloring genes. Defaults to 2.0.
p_value_cutoff (float) – Cutoff to use in grouping and coloring genes. Defaults to 1e-6.
label_selected_genes (bool) – Apply (if True) annotations of genes that pass both the log-fold-change and p-value cutoff values.
apply_default_opts (bool) – Whether to apply the default styling.
- Returns
A holoviews scatter plot of log-fold-change versus mean values.
- Return type
holoviews.Overlay
Parameters inherited from:
GSForge.plots.abstract_plot_models.AbstractPlottingOperation
: apply_default_opts, plot_optionsGSForge.plots.abstract_plot_models.ResultPlottingOperation
: sourcelog_fold_change_var
= param.String(readonly=False)The name of the log-fold change column. Must be a variable within source.
p_value_var
= param.String(readonly=False)The name of the p-value column. Must be a variable within source.
log_fold_change_cutoff
= param.Number(readonly=False)Cutoff to use in grouping and coloring genes. Defaults to 2.0.
p_value_cutoff
= param.Number(readonly=False)Cutoff to use in grouping and coloring genes. Defaults to 1e-6.
mean_value_var
= param.String(readonly=False)The name of the base mean column. Must be a variable within source.
label_selected_genes
= param.Boolean(readonly=False)Apply (if True) annotations of genes that pass both the log-fold-change and p-value cutoff values.
- log_fold_change_var = None¶
- p_value_var = None¶
- log_fold_change_cutoff = 2.0¶
- p_value_cutoff = 1e-06¶
- mean_value_var = None¶
- label_selected_genes = False¶
- static bokeh_opts()¶
- static matplotlib_opts()¶
- static mean_vs_lfc(source: xarray.core.dataset.Dataset, log_fold_change_var: str, p_value_var: str, mean_value_var: str, log_fold_change_cutoff: float = 2.0, p_value_cutoff: float = 1e-06, label_selected_genes: bool = False, gene_dim='Gene') holoviews.core.overlay.NdOverlay ¶
- name = 'MeanVsLFC'¶
- class GSForge.plots.results.Volcano(*args, **params)¶
Bases:
GSForge.plots.abstract_plot_models.ResultPlottingOperation
A volcano plot for examining differential gene expression results.
- Parameters
source (Union[GSForge.GeneSet, xarray.Dataset, pandas.DataFrame]) – Data source containing the log-fold change, and p-value variables.
log_fold_change_var (str) – The name of the log-fold change column. Must be a variable within source.
p_value_var (str) – The name of the p-value column. Must be a variable within source.
log_fold_change_cutoff (float) – Cutoff to use in grouping and coloring genes. Defaults to 2.0.
p_value_cutoff (float) – Cutoff to use in grouping and coloring genes. Defaults to 1e-6.
label_selected_genes (bool) – Apply (if True) annotations of genes that pass both the log-fold-change and p-value cutoff values.
apply_default_opts (bool) – Whether to apply the default styling.
- Returns
volcano scatter plot – A holoviews scatter plot of log-fold-change versus -log10(p-values).
- Return type
holoviews.Overlay
Parameters inherited from:
GSForge.plots.abstract_plot_models.AbstractPlottingOperation
: apply_default_opts, plot_optionsGSForge.plots.abstract_plot_models.ResultPlottingOperation
: sourcelog_fold_change_var
= param.String(readonly=False)The name of the log-fold change column. Must be a variable within source.
p_value_var
= param.String(readonly=False)The name of the p-value column. Must be a variable within source.
log_fold_change_cutoff
= param.Number(readonly=False)Cutoff to use in grouping and coloring genes. Defaults to 2.0.
p_value_cutoff
= param.Number(readonly=False)Cutoff to use in grouping and coloring genes. Defaults to 1e-6.
label_selected_genes
= param.Boolean(readonly=False)Apply (if True) annotations of genes that pass both the log-fold-change and p-value cutoff values.
- log_fold_change_var = None¶
- p_value_var = None¶
- log_fold_change_cutoff = 2.0¶
- p_value_cutoff = 1e-06¶
- label_selected_genes = False¶
- static bokeh_opts()¶
- static matplotlib_opts()¶
- static volcano(source: xarray.core.dataset.Dataset, log_fold_change_var: str, p_value_var: str, log_fold_change_cutoff: float = 2.0, p_value_cutoff: float = 1e-06, label_selected_genes: bool = False, gene_dim='Gene') holoviews.core.overlay.NdOverlay ¶
- name = 'Volcano'¶